X-ray attenuation cell

نویسندگان

  • D. Ryutov
  • A. Toor
  • Lawrence Livermore
چکیده

To minimize the pulse-to-pulse variation, the LCLS FEL must operate at saturation, i.e. 10 orders of magnitude brighter spectral brilliance than 3-generation light sources. At this intensity, ultra-high vacuums and windowless transport are required. Many of the experiments, however, will need to be conducted at a much lower intensity thereby requiring a reliable means to reduce the x-ray intensity by many orders of magnitude without increasing the pulse-to-pulse variation. In this report we consider a possible solution for controlled attenuation of the LCLS x-ray radiation. We suggest using for this purpose a windowless gas-filled cell with the differential pumping. Although this scheme is easily realizable in principle, it has to be demonstrated that the attenuator can be made short enough to be practical and that the gas loads delivered to the vacuum line of sight (LOS) are acceptable. We are not going to present a final, optimized design. Instead, we will provide a preliminary analysis showing that the whole concept is robust and is worth further study.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of effect of gold nanorods and spherical gold nanoparticles of different sizes on X-ray attenuation in computed tomography

Introduction: To date, gold nanoparticles (GNPs) have been demonstrated to have great potential as contrast agent for CT imaging and therapeutics. This study was designed to evaluate any effect on X-ray attenuation that might result from using GNPs with a variety of size, surface chemistries and shapes.   Materials and Methods: Spherical GNPs and gold nanorod...

متن کامل

Application of characteristic X-rays to measure linear attenuation coefficient of nano-composites used in shielding

Using of X-rays in different industries and especially in medical application is increasing. In this regard, designing of light and efficient protective material based on polymeric nanocomposites and precise study of the effect of adding nanoparticles with different sizes on the X-ray attenuation is necessary. In this study the epoxy nanocomposites with different percentages of copper oxide nan...

متن کامل

Investigation of the Mass Attenuation Coefficient for Composites Containing Nano and Micro-Particles of Copper Oxide against Diagnostic X-ray

Radiation protection and the selection of suitable materials to reduce radiation effects is one of the important branches of medical science and radiation. In this paper, the mass attenuation coefficients, half value layer thicknesses and thicknesses of 0/5 mm lead of polyvinyl chloride (PVC) composites containing Nano and micro-particles of copper oxide are calculated using experimental method...

متن کامل

Radiation attenuation properties of shields containing micro and Nano WO3 in diagnostic X-ray energy range

Background: It has recently been shown that the particle size of materials used for radiation shielding can affect the magnitude of radiation attenuation. Over the past years, application of nano-structured materials in radiation shielding has attracted attention world-wide. The purpose of this study was to investigate the shielding properties of the lead-free shields containing micro and nano-...

متن کامل

Evaluation of multifunctional targeted gold nanoparticles on X-ray attenuation in nasopharyngeal cancer cells by X- ray imaging

Introduction: Head-and-neck cancer is the sixth most common cancer worldwide with the number of cases consistently increasing in developing countries. Successful development of effective, safe and cost effective nanoprobes for head-and-neck cancer targeting imaging is a big challenge. This study is aimed to develop cysteamine-folate conjugated gold nanoparticles (F-Cys-AuNPs) a...

متن کامل

An iterative method to estimate x-ray attenuation coefficients in computed tomography

Introduction: The basis of image formation in Computed Tomography (CT) lies in the x-ray linear attenuation coefficient of the scanned material. Compton scattering and photoelectric effect are the dominant interactions of the x-ray photons with the subject, in the range of diagnostic radiology. These two coefficients are important in tissue characterization by Dual-Energy CT (D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000